Stability of non-Boussinesq convection via the complex Ginzburg–Landau model
نویسندگان
چکیده
منابع مشابه
Reentrant Hexagons in non-Boussinesq Convection
While non-Boussinesq hexagonal convection patterns are well known to be stable close to threshold (i.e. for Rayleigh numbers R ≈ Rc), it has often been assumed that they are always unstable to rolls already for slightly higher Rayleigh numbers. Using the incompressible Navier-Stokes equations for parameters corresponding to water as a working fluid, we perform full numerical stability analyses ...
متن کاملNon-oberbeck-boussinesq effects in gaseous Rayleigh-Bénard convection.
Non-Oberbeck-Boussinesq (NOB) effects are measured experimentally and calculated theoretically for strongly turbulent Rayleigh-Bénard convection of ethane gas under pressure where the material properties strongly depend on the temperature. Relative to the Oberbeck-Boussinesq case we find a decrease of the central temperature as compared to the arithmetic mean of the top- and bottom-plate temper...
متن کاملNon-Boussinesq effect: Thermal convection with broken symmetry
We investigate large Rayleigh number (10– 10) and large Prandtl number (10– 10) thermal convection in glycerol in an aspect ration one cubic cell. The kinematic viscosity of the fluid strongly depends upon the temperature. The symmetry between the top and bottom boundary layers is thus broken, the so-called non-Boussinesq regime. In a previous paper Wu and Libchaber have proposed that in such a...
متن کاملWhirling hexagons and defect chaos in hexagonal non-Boussinesq convection
We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating (whirling) hexagons. Using triangulation we ob...
متن کاملReentrant and Whirling Hexagons in Non-Boussinesq convection
We review recent computational results for hexagon patterns in nonBoussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a verti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluid Dynamics Research
سال: 2004
ISSN: 0169-5983,1873-7005
DOI: 10.1016/j.fluiddyn.2004.06.002